


Convergence to Equilibrium

The object for today is to prove

Theorem
For (X;)t>0 an irreducible positive recurrent Markov chain, for each
ij€el,
P(X(t) = j[Xo = 1) = 7(j)
as t tends to infinity where 7 is the unique invariant distribution.

Observe: unlike the discrete case there is no need for any aperiodicity
assumption.



Useful Discrete Processes

Recall that given h > 0, Z" = Z is the discrete time markov chain
Z: = th

We will suppress the superscript h if we are only dealing with a single fixed
h.

It was shown that X is irreducible if and only if Z is irreducible. Notice
that whatever value h has P# > e~ 9" so Z is aperiodic. In fact we can
also see this by the fact that Vi,j (P?)}; = P(Xan = j|Xo = i) > 0. We
also have that 7, the invariant distribution for the continuous time Markov
chain is the unique invariant distribution forP), (or equivalently Z).

So from discrete time theory
Py(nh) — N"(j)

for A\ stationary for transition probability P(h).



End of Proof

Let us write h" = h27" (so h = h°). Again for every h,
Pi(nh") — X"(j)

as n tends to infinity. We use the elementary inequalities for
nh" <t <(n+1)h"

e Pyi((n+1)h") > Py(t) > e %" P;j(nh")
This shows that

e 9" n(j) < lim inf Py(t) < limsup P;(t) < e n(j)

t—o0 t—00

But r is arbitrarily large!



RENEWAL PROCESSES

The theory begins with an example. The lifetimes of different light bulbs
are i.i.d. positive random variables Xi, X5, ---. When a bulb dies it is
immediately replaced by another (in dependent) lightbulb. Let N(t)be the
number of lightbulbs replaced by time t. Write S, = >~} Xi (so Sy(y) is
the time of the last replacement at time t)

Some questions. For t large what can we say about

® t — Sn(y), the current lifetime of the bulb in use = L(t)
® Sn(ty+1 — t, the remaining lifetime of the bulb in use,= R(t)

® Snery+1 — Swn(e) the full lifetime of the current lightbulb =K(t)

Remark: If the X; take integer values ,resp. rational values, then K(t)
must also take these values. This is not the case with L(t) or R(t).
Obviously if X; only takes integer values, no limit is posiible for L(t) or
R(t) but we will see that generally the limits do exist. .



Two integer examples

First consider K(t) for X; which take two values with equal probability 1
and 1,000,000. There is an integer structure for K(t) We interpret K(n)
to equal K(n+ 1)+ 3 for positive integer n. We do not know that
P(K(t) = 1) has a limit as t becomes large, or that %fot Ik(s)=1ds
converges to this limit. But suppose we know this. We expect that for
large m m about half the X;i < m will be 1 and about half will be
1,000, 000. So for t large, we will have had (to first order) about
t/(2E[X1]) bulbs of lifetime 1 and about this number with duration
1,000, 000. So (to first order) the proportion of time s with K(s) =1
should be around m. So if the above limits exist then

lim, P(K(t) =1) = m. Which is very different from 1.



Second integer example

. Recall the following example. We have a law on the positive integers

I ={1,2,3,---}, v which defines the following Markov chain transition
probabilities on /: for n > 1, p(n,n —1) =1, p(1,n) = v(n). For a good
fit with lightbulbs, | will take X(0) to have law v. Then we can see the

time after X has value 1 as lightbulb change times. X(n) is simply R(n)
for the corresponding lightbulb process. But we know that if

,LL:ZI?I/(I‘I)< 00

then our chain X is positive recurrent with invariant distribution

2 mzn V(M)

w{n) = S < i PR(K) = )

and also



Law of large Numbers

The X; are positive random variables. So the expectation = E[X]] is

well defined (possibly it is infinite). Thus 2 converges a.s. to p1. So
Snt1 _ Spt1 ntl

=t = 2eo = converges to 1 as n tends to infinity. Thus as t becomes
large
S S
N(t)+1 and N(t)
N(t) N(t)
both converge to . But Sy() <t < Sy(ey+1, SO 7 does too. Hence
N(t) 1
s

Let m(t) = E[N(t)]. Since @ — % we have @ — i



The Renewal Equation

Let F(= Fx) be the distribution function of the X; : F(x) = P(X; < x).
We begin with finding a family of equations satisfied by quantities A(t)
associated with our random variables X;. If we wish to understand the
limiting distribution of, say, K(t) this reduces to understanding for every
positive x the values P(K(t) > x). We fix x and put

A(t) = P(K(t) > x).

Now the renewal equation reduces to

P(K(t) > x) = E [P(K(t) > x|X1)]



There are two cases
o X; =y <t P(K(t)>x|X1) = At —y)
° Xi =y >t P(K(t) > x|X1) = Ix;>x

Taking the expectation (over Xi) gives

A(t) = OtA(t —y)dF(y)+ (1 — F(xVt))



A Second Example

We can repeat this argument for R(t). Again we fix x and we look at
A(t) = P(R(t) > x)
Again we use that the probability is the expectation of the conditional
probability: P(R(t) > x) = E [P(R(t) > x|X1)]. This time
o Xy =y <t P(R(t)>x|X1) =A(t—y)
e Xi =y >t P(R(t) > x|X1) = Ix;>t4x
. and so

Alt) = /OtA(t — Y)F(y) + (1 — F(t + %))

In both (and in other cases) we wish to investigate a quantity A(t)
satisfying a RENEWAL EQUATION: for some probability law dF(x) and
some function h(x)

Ao - [ CA(t— y)dF(y) + A1)



Return to m(t)

We wish to provide a convergence result for m(t) = E[N(t)]. What might
this be? m(.) is a function tending to infinity as t tends to infinity. One
thing to look at is (for h > 0 fixed) A(t) = m(t) — m(t — h) Two
observations

t
A(t) = / A(t — y)dF(y) + F(t) — F(t — h)
0
Secondly we can write N(t) as >, Is,<:. Taking expectations we obtain

mt) =Y P(S,<t)=Y Fut)

where F, is the distribution function of S,,.



