


Convergence to Equilibrium

The object for today is to prove

Theorem
For (Xt)t≥0 an irreducible positive recurrent Markov chain, for each
i , j ∈ I ,

P(X (t) = j |X0 = i)→ π(j)

as t tends to infinity where π is the unique invariant distribution.

Observe: unlike the discrete case there is no need for any aperiodicity
assumption.



Useful Discrete Processes

Recall that given h > 0,Z h = Z is the discrete time markov chain

Z h
n = Xnh

We will suppress the superscript h if we are only dealing with a single fixed
h.

It was shown that X is irreducible if and only if Z is irreducible. Notice
that whatever value h has PZ

ii > e−qih so Z is aperiodic. In fact we can
also see this by the fact that ∀i , j (PZ )nij = P(Xnh = j |X0 = i) > 0. We
also have that π, the invariant distribution for the continuous time Markov
chain is the unique invariant distribution forPh (or equivalently Z.).

So from discrete time theory

Pij(nh) → λh(j)

for λh stationary for transition probability P(h).



End of Proof

Let us write hr = h2−r (so h = h0). Again for every hr

Pij(nh
r )→ λh(j)

as n tends to infinity. We use the elementary inequalities for
nhr ≤ t ≤ (n + 1)hr

eqjh
r

Pij((n + 1)hr ) ≥ Pij(t) ≥ e−qjh
r

Pij(nh
r )

This shows that

e−qjh
r

π(j) ≤ lim inf
t→∞

Pij(t) ≤ lim sup
t→∞

Pij(t) ≤ eqjh
r

π(j)

But r is arbitrarily large!



RENEWAL PROCESSES

The theory begins with an example. The lifetimes of different light bulbs
are i.i.d. positive random variables X1,X2, · · · . When a bulb dies it is
immediately replaced by another (in dependent) lightbulb. Let N(t)be the
number of lightbulbs replaced by time t. Write Sr =

∑r
1 Xk (so SN(t) is

the time of the last replacement at time t)
Some questions. For t large what can we say about

• t − SN(t), the current lifetime of the bulb in use = L(t)

• SN(t)+1 − t, the remaining lifetime of the bulb in use,= R(t)

• SN(t)+1 − SN(t) the full lifetime of the current lightbulb =K (t)

.

Remark: If the Xi take integer values ,resp. rational values, then K (t)
must also take these values. This is not the case with L(t) or R(t).
Obviously if X1 only takes integer values, no limit is posiible for L(t) or
R(t) but we will see that generally the limits do exist. .



Two integer examples

First consider K (t) for Xi which take two values with equal probability 1
and 1, 000, 000. There is an integer structure for K (t) We interpret K (n)
to equal K (n + 1

2
) + 1

2
for positive integer n. We do not know that

P(K (t) = 1) has a limit as t becomes large, or that 1
t

∫ t

0
IK(s)=1ds

converges to this limit. But suppose we know this. We expect that for
large m m about half the Xi i ≤ m will be 1 and about half will be
1, 000, 000. So for t large, we will have had (to first order) about
t/(2E [X1]) bulbs of lifetime 1 and about this number with duration
1, 000, 000. So (to first order) the proportion of time s with K (s) = 1
should be around 1

1,000,001
. So if the above limits exist then

limt P(K (t) = 1) = 1
1,000,001

. Which is very different from 1
2
.



Second integer example
. Recall the following example. We have a law on the positive integers
I = {1, 2, 3, · · · }, ν which defines the following Markov chain transition
probabilities on I : for n > 1, p(n, n − 1) = 1, p(1, n) = ν(n). For a good
fit with lightbulbs, I will take X (0) to have law ν. Then we can see the
time after X has value 1 as lightbulb change times. X (n) is simply R(n)
for the corresponding lightbulb process. But we know that if

µ =
∑
n

nν(n) < ∞

then our chain X. is positive recurrent with invariant distribution

π(n) =

∑
m≥n ν(m)

µ
= lim

k
P(R(k) = n)

and also

lim
k→∞

P(R(k) > n) =
1

µ

∑
m≥n

(1− F (m))



Law of large Numbers

The Xi are positive random variables. So the expectation µ = E [Xi ] is
well defined (possibly it is infinite). Thus Sn

n
converges a.s. to µ. So

Sn+1

n
= Sn+1

n+1
n+1
n

converges to 1 as n tends to infinity. Thus as t becomes
large

SN(t)+1

N(t)
and

SN(t)

N(t)

both converge to µ. But SN(t) ≤ t ≤ SN(t)+1, so t
N(t)

does too. Hence

N(t)

t
→ 1

µ
.

Let m(t) = E [N(t)]. Since N(t)
t
→ 1

µ
, we have m(t)

t
→ 1

µ
.



The Renewal Equation

Let F (= FX ) be the distribution function of the Xi : F (x) = P(X1 ≤ x).
We begin with finding a family of equations satisfied by quantities A(t)
associated with our random variables Xi . If we wish to understand the
limiting distribution of, say, K (t) this reduces to understanding for every
positive x the values P(K (t) > x). We fix x and put
A(t) = P(K (t) > x).

Now the renewal equation reduces to

P(K (t) > x) = E [P(K (t) > x |X1)]



There are two cases

• X1 = y ≤ t: P(K (t) > x |X1) = A(t − y)

• X1 = y > t: P(K (t) > x |X1) = IX1>x

.

Taking the expectation (over X1) gives

A(t) =

∫ t

0

A(t − y)dF (y) + (1− F (x ∨ t))



A Second Example
We can repeat this argument for R(t). Again we fix x and we look at

A(t) = P(R(t) > x)

Again we use that the probability is the expectation of the conditional
probability: P(R(t) > x) = E [P(R(t) > x |X1)]. This time

• X1 = y ≤ t: P(R(t) > x |X1) = A(t − y)

• X1 = y > t: P(R(t) > x |X1) = IX1>t+x

. and so

A(t) =

∫ t

0

A(t − y)dF (y) + (1− F (t + x))

In both (and in other cases) we wish to investigate a quantity A(t)
satisfying a RENEWAL EQUATION: for some probability law dF (x) and
some function h(x)

A(t) =

∫ t

0

A(t − y)dF (y) + h(t)



Return to m(t)

We wish to provide a convergence result for m(t) = E [N(t)]. What might
this be? m(.) is a function tending to infinity as t tends to infinity. One
thing to look at is (for h > 0 fixed) A(t) = m(t)−m(t − h) Two
observations

A(t) =

∫ t

0

A(t − y)dF (y) + F (t)− F (t − h)

Secondly we can write N(t) as
∑

n ISn≤t . Taking expectations we obtain

m(t) =
∑
n

P(Sn ≤ t) =
∑
n

Fn(t)

where Fn is the distribution function of Sn.


